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Nitrogen application and differences 
in leaf number retained after topping affect 
the tobacco (Nicotiana tabacum) transcriptome 
and metabolome
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Abstract 

Background:  Agronomic treatments such as the application of nitrogen fertilizer and topping (removal of the inflo-
rescence and top leaves) cause substantial changes in plant metabolism. To explore these changes, we conducted 
comparative transcriptomic and metabolomic analyses of leaves collected from four positions along the stem on 
plants exposed to two nitrogen doses and with different numbers of leaves retained after topping in tobacco (Nico-
tiana tabacum).

Results:  We identified 13,330 unique differentially expressed genes and 32 differentially abundant metabolites. 
Through RNA-seq and WGCNA analyze, we constructed 2 co-expression networks (green and blue) highly correlation 
to N application and leaf number retained, predicted a hub gene NtGER3 may play an important role in N metabolism 
related to amino acid (cysteine) through CK pathway in tobacco leaves, NtARFs may participated in modulating the 
auxin signal and N in bottom leaves and NtRAP2.12 as key gene involved in N regulation by ethylene pathway. What’s 
more, our data prove C/N transformation and balance affect the “source – flow - sink” redistribution and remobilization 
in tobacco during growth and development process.

Conclusions:  Overall, this comparative transcriptomics study provides novel insight into the complex molecular 
mechanisms underlying plant responses to different levels of nitrogen application and the number of leaves remain-
ing after topping in plants.
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Background
Plants as sessile organisms are faced varying nitrogen 
(N) demand by whole growth, N supply is often the lim-
iting factor and affecting the production of biomass and 
metabolic processes [1, 2]. Plants rely on N assimilation 
from nitrate (NO3

−) or ammonium (NH4
+) [1] and under 

aerobic conditions, the predominant form of N in the 
soil is nitrate, which is taken up in roots and transported 
throughout the plant by members of the NITRATE 
TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER 
(PTR) Family (NPF), NRT2, CHLORIDE CHANNEL 
(CLC), and SLOWLY ACTIVATING ANION CHAN-
NEL (SLAC) families of nitrate transporters [3].

NO3
− also participates in signaling and the transcrip-

tion factor (TF) NIN-LIKE PROTEIN7 (NLP7) has been 
proposed as a master regulator in NO3

− signaling [4]. 
NO3

− plays a critical role in regulating embryo [5] and 
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root development, photosynthesis [6], stress tolerance 
[7], and senescence [8] in Arabidopsis thaliana and crops. 
Not surprisingly, most of these regulatory pathways 
intersect with phytohormone signaling pathways [9–12]. 
The more important is that the interaction between N 
and cytokinins (CKs) are manifested by nitrate-induced 
CK synthesis in roots and CK-induced expression of 
N-related genes, OsIPT4, OsIPT5, OsIPT7 and OsIPT8 
were up-regulated in response to exogenously applied 
nitrate and ammonium with accompanying accumulation 
of CKs in rice [13]. And the exogenous application of CK 
can repress the expression of Arabidopsis NRT2 genes 
[14]. CKs also mainly in the form of trans-zeatin-riboside 
(tZR) and trans-zeatin (tZ) function as the long-distance 
signals through xylem transport, genes involved in gluta-
mate and glutamine biosynthesis are identified as poten-
tial targets of tZ regulation, which indicating a possible 
role of amino acids in the long-distance shoot-to-root N 
signalling [15, 16].

Another major form of N present in the soil is NH4
+, 

which is abundant in flooded wetland or acidic soils [2]. 
NH4

+ is absorbed by plant roots via ammonium trans-
porters (AMTs) [17] and assimilated into amino acids via 
the glutamine synthetase (GS) /glutamine-2-oxoglutarate 
aminotransferase (GOGAT) cycle [18].

In most plants, N is primarily assimilated into amino 
acids in roots or shoots [19]. Within plant leaves, N is 
stored as amino acids or proteins to sustain plant growth, 
or is loaded into the phloem to supply N to developing or 
temporary sink tissues [20–23]. In pea (Pisum sativum), 
overexpressing AMINO ACID PERMEASE1 (AAP1) 
improved N uptake or utilization efficiency [19]. Amino 
acids participate in the tricarboxylic acid (TCA) cycle, 
produce the energy needed by the cell [24], and regulate 
the carbon and nitrogen (C/N) balance [25].

Topping is an important and traditional agronomic 
measure that involves removing the flower, often as early 
as a bud, and chopping off a set number of leaves from the 
top of the plant, which will affect leaf number retained in 
the plant. Topping increased the expression of NtNAC-
R1, encoding a NAM, ATAF1/2 and CUC2 (NAC) 
domain TF and reduced expression of the microRNA 
miR164, and resulted in an increase in root indole-3-ace-
tic acid (IAA) content that influences lateral root forma-
tion and affects jasmonic acid (JA) signaling, leading to 
an increase in nicotine content, indicating that topping 
affect leaf number retained caused crosstalk between JA 
and auxin signaling [26]. Furthermore, previous tran-
scriptomic data showed that topping affected C and N 
metabolism, photosynthesis, and secondary metabolism 
in tobacco, while the amendment of soil with straw-based 
biochar before topping enhanced amino acid and lipid 
biosynthesis [27]. Different leaf number retained after 

topping influences nutrient biosynthesis and distribution 
during plant growth by profoundly resetting the source–
sink relationship throughout the plant body.

Here, we chose tobacco as a model to study the effects 
of different leaf number retained and nitrogen applica-
tion. We conducted RNA sequencing (RNA-seq) and 
metabolite profiling following a split-plot experimental 
design to assess the effects of two different N concentra-
tions and two distinct numbers of leaves retained, sam-
pled in four sets of leaves positioned along the main stem 
of tobacco plants. Combining RNA-seq and metabolomic 
data with weighted gene co-expression network analysis 
(WGCNA), we identified two networks and several hub 
genes linked to N applications and the number of leaves 
retained after topping. These results provide insight 
about crosstalk between N application and the number of 
leaves retained and how topping reprograms plant tran-
scriptomes to affect leaf N compounds.

Results
Measurement of different metabolites in tobacco leaves
To unravel the relationship between N and amino acid 
metabolism, we measured the contents of 32 metabo-
lites, such as total N, protein, amino acids and several 
polyamines (PAs) et al. in tobacco plants (Supplementary 
Table 2). We used plants that had been treated with two 
different doses of exogenous N: A1 (pure N 3 kg/667 m2) 
and A2 (pure N 6 kg/667 m2), and with 12 (B1) or 16 (B2) 
leaves remaining on each plant after topping, then we 
sampled leaves from the bottom, middle, upper, and top 
parts of the plant.

We next calculated correlations between metabolites, 
revealing a strong positive correlation (r = 0.89) between 
total protein and total N content (Supplementary Fig. 2), 
which followed the same trend in bottom, middle, and 
upper leaves (Supplementary Fig. 3). We observed posi-
tive correlations between some amino acids, such as leu-
cine, lysine, and tyrosine, which may reflect their shared 
metabolic pathways (Supplementary Fig.  2). Combining 
the effects of nitrogen supplementation on amino acid 
levels (Fig.  1) and the metabolite data (Supplementary 
Table  2) showed that in the presence of ATP, organic 
ammonium and glutamate are converted into glutamine 
by glutamine synthetase (GS), while inorganic nitrogen is 
converted into organic nitrogen (nitrate) that can then be 
absorbed and utilized by plants. Proline, phenylalanine, 
threonine, and asparagine contents were positively corre-
lated with the N dose applied (Fig. 1). In terms of number 
of leaves retained, our results indicated that leaf contents 
of aspartic acid, glutamic acid, proline, leucine, isoleu-
cine lysine and tyrosine decreased with an increase in the 
number of leaves retained (Supplementary Table 2). Our 
results therefore suggest that the dose of N application 
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and the number of leaves retained affect the content, the 
types, and metabolic processes of free amino acids in 
tobacco leaves.

PAs regulate plant growth and responses to stress, 
PA anabolism is similar to that of arginine and ornith-
ine [28]. We examined the content of several important 
PAs, the contents and accumulation patterns of putres-
cine and spermidine were similar, as they both exhibited 
their highest levels in the A2B2 condition (high N dose 
and more leaves retained after topping), with an average 
putrescine content of 10.11 ng/g and an average spermi-
dine content of 9.75 ng/g (Supplementary Fig. 2, Supple-
mentary Table 2).

Transcriptome analysis
Transcriptome analysis was performed to investigate the 
changes in tobacco leaves of plants experiencing differ-
ent doses of N application and different number of leaves 
retained after topping, we collected samples for deep 
sequencing of the RNA-seq. After filtering low-quality 
reads and trimming adapters, we obtained ~ 997 million 
raw reads, with an average of ~ 31 million reads per sam-
ple, corresponding to 127 Gb of sequence in total, with 
~ 4 Gb of data per sample on average (Supplementary 
Table  3). Based on 69,500 annotated tobacco genes and 
a coding space of only 325.3 Mb (excluding promoters 
and introns), we estimated the coverage of our RNA-seq 

Fig. 1  Effects of N nutrition and plant topping on the main nitrate and ammonium assimilation pathways leading to amino acid biosynthesis. 
Values are shown as means ± standard error (SE) of three biological replicates. Different letters indicate a significant difference (Tukey’s multiple 
comparison test, P < 0.05). GS: Glutamine Synthetase; GOGAT: Glutamine Synthetase
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data to be about 20X, which should be sufficient to detect 
genes with low transcript abundance.

Salmon (v0.8.2) was used to map ~ 865 million clean 
reads to the tobacco reference genome v4.5 (https://​
solge​nomics.​net/​organ​ism/​Nicot​iana_​tabac​um/​genome), 
resulting in an average of ~ 2.9 million mapped reads per 
sample (80.9 to 85.0% of clean starting reads, Supplemen-
tary Table  3). These results indicated that we obtained 
high-quality sequencing results, and we have enough 
sequencing data for our subsequent analysis.

Identification of differentially expressed genes (DEGs) 
under different treatments
We identified 7560 DEGs in response to N supply across 
the four collection points for leaves and using the low 
N dose (A1) as control for the higher N dose treatment 
(A2), using cutoffs for false discovery rate (FDR) < 0.05 
and absolute log2(fold change) ≥2 (Fig.  2a, Supplemen-
tary Table 3). We detected the highest number of DEGs 
in the samples collected from the top leaves regardless of 
the N dose applied. The number of DEGs showed little 
relationship with the number of leaves retained. When we 
retained 12 leaves after topping (condition B1), we iden-
tified the fewest DEGs in the top leaves, but the lowest 
leaves showed the fewest DEGs when we left 16 leaves on 
the plants (condition B2). It is worth noting that when we 
kept 12 leaves on plants after topping, a majority of DEGs 
in the bottom and middle leaf positions were up-regu-
lated, indicating that sufficient N supply may modulate 
the entire plant transcriptional program, improving the 
ability of plants to perform various biological functions.

We then turned to a comparison of leaf transcriptomes 
focusing on the effect of the number of leaves retained 
(12 or 16) for the two N doses applied and the four leaf 
positions under consideration, which resulted in the 
identification of 5770 DEGs when12 leaves retained (B1) 
as the control (Fig.  2b, Supplementary Table  4). With 
the lower N dose (A1), the top leaves showed the high-
est number of DEGs, while the bottom leaves were asso-
ciated with the most DEGs at the higher N dose (A2). 
The lower N dose (A1) yielded the largest number of up-
regulated DEGs in the middle leaves, and the higher N 
dose (A2) yielded most up-regulated DEGs in the bottom 
leaves. We saw the highest number of down-regulated 
genes in the top leaves for both N doses, possibly indi-
cating that newly emerged leaves produce a more-pro-
nounced response to external stimuli.

GO term enrichment analysis of DEGs
By performing GO functional enrichment analysis, under 
different N doses, when the number of leaves retained 
was 12, up-regulated genes were mainly enriched in bio-
logical processes such as photosynthesis (GO: 0015979), 
organo-nitrogen compound metabolic process (GO: 
1901564) and down-regulated genes were largely 
enriched in response to organo-nitrogen compound (GO: 
0010243), defense response (GO: 0006952), and hor-
mone-mediated signaling pathway (GO: 0009755) (Sup-
plementary Table 5). These results may reflect the better 
growth displayed by plants exposed to adequate N fertili-
zation, and how they may be better able to adapt to exter-
nal biotic and abiotic stress. Under these conditions, the 

Fig. 2  Number of Differentially Expressed Genes (DEGs) identified as a function of N nutrition and plant topping in tobacco

https://solgenomics.net/organism/Nicotiana_tabacum/genome
https://solgenomics.net/organism/Nicotiana_tabacum/genome
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plants may mobilize less resources toward plant resist-
ance through phytohormone responses and other means.

However, the response of bottom and middle leaves to 
different N doses clearly differed from the response of 
the top leaves. Genes that respond to external stimuli in 
the middle leaves showed a general up-regulation, while 
genes involved in organic N assimilation were mainly up-
regulated in the middle leaves (Supplementary Table 5). 
We hypothesize that bottom and middle leaves may com-
pete for N distribution: although N will preferentially 
supply the bottom leaves near the root under normal 
conditions, relative N deficiency will allocate more N to 
the middle leaves for better photosynthesis.

We detected few DEGs in upper leaves, indicating that 
these leaves were not directly involved in the changes 
in N metabolism. GO enrichment analysis indicated 
that top leaves experienced an inhibition of auxin trans-
port activity and a reduction in photosynthetic capacity 
related to plant growth and development under N suffi-
ciency (A2), whereas their ability to respond to organic N 
substances improved, a situation opposite to that of bot-
tom leaves (Supplementary Table 5).

GO enrichment analysis yielded very similar results 
when the number of leaves retained was 16, with the 
exception of the top leaves, where up-regulated genes are 
largely involved in phloem development (GO: 0010088) 
and terpene biosynthetic process (GO: 0046246), while 
down-regulated genes are mainly involved in the regu-
lation of phenylpropanoid metabolic process (GO: 
2000762) and aminoglycan catabolic process (GO: 
0006026). The expression profile changes for top leaves 
were much more pronounced in response to the two N 
doses relative to leaves in other positions. Top leaves may 
regulate their N content by inducing genes related to 
amino acid biosynthesis or degradation pathways (Sup-
plementary Table 5). Thus, we hypothesize that N distri-
bution in the plant is closely linked to leaf position as well 
as the number of leaves retained after topping.

At the lower N dose (A1), we detected too few DEGs 
in bottom and upper leaves for subsequent analysis. By 
contrast, in middle leaves, up-regulated genes followed 
clear patterns, with enrichment in xyloglucan metabolic 
process (GO: 0010411), carbohydrate metabolic process 
(GO: 0005975), response to amino glycan metabolism, 
and response to organic N compounds. Down-regulated 
genes were associated with biological processes such as 
response to karrikin (GO: 0080167) and flavonoid biosyn-
thetic process (GO: 0009813) (Supplementary Table  5). 
Up-regulated genes in top leaves were mainly related to 
various stress responses and down-regulated genes were 
largely involved in photosynthesis (GO: 0015979), carbo-
hydrate metabolic process (GO: 0005975), and cell wall 
organization (GO: 0071555) (Supplementary Table  5). 

The enrichment of these DEGs indicated that, in order 
to conserve energy for the formation and development 
of new leaves, the genes related to cell wall biosynthesis 
and photosynthesis were significantly down-regulated at 
the lower N dose. At the same time, the entire plant may 
become more sensitive to external environmental stress, 
resulting in a more frequent adjustment of transcrip-
tional outputs.

Construction and analysis of co‑expression networks
In order to further clarify the regulatory mechanism 
underlying tobacco responses to various N doses and 
to the number of leaves retained, we integrated the data 
from 32 metabolites and 13,330 DEGs as above results 
from RNA-seq and metabolomics into the construction 
of co-expression networks by using the weighted gene 
co-expression network analysis (WGCNA) package in R 
(Fig. 3).

Under the given code and running procedures of 
WGCNA, 13,330 unique DEGs were divided into 13 
gene modules with different colors. All trait correlations 
corresponding to their respective most and least rel-
evant modules are shown in Fig.  4, and Supplementary 
Tables 6, 7. The numbers of genes in each module were 
542, 3332, 3123, 2215, 148, 265, 416, 149, 728, 56, 4281 
and 2779 for the black, blue, brown, green, greenyellow, 
magenta, pink, purple, red, tan, turquoise and yellow 
colours, respectively. In addition, 3668 genes were not 
assigned to any modules and were grouped into the grey 
module.

The module with the strongest positive correlation to 
metabolites was the green module (with 2216 genes), 
such as asparagine (r = 0.65, P = 5e-05) and putrescine 
(r = 0.64, P = 7e-05) (Fig.  5a, b). We turned to GO enrich-
ment analysis to identify processes that were significantly 
enriched in this module. Genes belonging to the green 
module were principally involved in amino acid metabo-
lism, such as cellular amino acid metabolic process (GO: 
0006520), aspartate family amino acid metabolic pro-
cess (GO: 0009066), glutamine family amino acid meta-
bolic process (GO: 0009064), and serine family amino acid 
catabolic process (GO: 0009071) (Fig.  5c, Supplementary 
Table 8). We also identified GLUTAMINE SYNTHETASE2 
(Nitab4.5_0000059g0010.1, NtGS2), ASPARAGINE SYN-
THETASE2 (Nitab4.5_0000102g0010.1, NtASN2), SER-
INE/THREONINE SOLUBLE PROTEIN KINASE2 
(Nitab4.5_0000171g0330.1, NtS6K2), PROLINE-RICH SOL-
UBLE PROTEIN2 (Nitab4.5_0000283g0120.1, NtPRP2) and 
other important amino acid-related genes in the green mod-
ule. This analysis demonstrated that the difference between 
N dose and the number of leaves retained affects amino acid 
biosynthesis in tobacco plants. Notably, we determined that 
chlorophyll binding (GO: 0016168), photosynthesis, light 
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harvesting (GO: 0009765), photosynthesis (GO: 0015979) 
and carbon fixation (GO: 0015977), generation of precur-
sor metabolites and energy (GO: 0006091) pathways were 
also enriched (Supplementary Table 8), suggesting that plant 
photosynthesis and energy metabolism may play a role in N 
assimilation into amino acids.

Relationships between module eigengenes revealed 
that the green module had the highest correlation with 
the blue modules (r = 0.75) (Supplementary Fig.  4), it 
has a positive correlation with N dose and the number 
of leaves retained (Fig.  6a, b). By contrast, genes in the 
blue module (3332 genes) showed a negative correlation 
with most metabolic substances (Fig.  4, Supplementary 
Table 6, 7). GO enrichment analysis for the blue module 
revealed an over-representation of nitrogen compound 
metabolic process (GO: 0051171), response to hormone 
(GO: 0009725), especially JA (GO: 0009753), salicylic 
acid (SA) (GO: 0009751), and ethylene (GO: 0009723), 
as well as genes involved in aromatic amino acid family 
biosynthetic process (GO: 0009095) (Fig. 6c, Supplemen-
tary Table  8). We identified several classical N marker 
genes in the blue module, such as nitrate transporter 

gene Nitab4.5_0000785g0250.1 (NtNRT1-2a) and 
Nitab4.5_0004605g0120.1 (NtNRT1-2b) [29]. This obser-
vation indicates that the blue module is highly related to 
N metabolism, and that phytohormones may influence N 
transport and metabolism in tobacco.

Role of key genes responsive to N application and number 
of leaves retained
We selected the top 30 significant genes from the blue 
and green modules (Supplementary Table  9) with a 
threshold value was less than 0.01 as determined by 
WGCNA and constructed their corresponding networks, 
using their FPKM values after log2(FPKM + 1) transfor-
mation across all samples (Fig. 7).

The green module network consisted of 30 nodes 
and 476 edges (Fig.  7a). The selected genes were highly 
expressed in the upper leaves, as shown by the heatmap 
representation (Fig.  7b). Since our analysis had indi-
cated that metabolites were most highly correlated with 
the green module (Fig.  4), we selected the ASPARTYL 
PROTEASE genes Nitab4.5_0003481g0010.1 (NtAP-
3) and Nitab4.5_0005808g0080.1 (NtAP-4). NtAP-3 

Fig. 3  Cluster dendrogram of WGCNA results
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and NtAP-4 were more highly expressed under high 
N conditions (A2) independently of the number of 
leaves retained (Fig.  7b). Within the green module net-
work, we identified a gene with unknown function gene 
(Nitab4.5_0000305g0210.1, whose Arabidopsis ortholog 
is At4g01150) and a high expression level at the higher 
N dose and with more leaves retained (Fig. 7b). Notably, 
this gene is associated with the GO terms photosynthetic 
membrane (GO: 0034357) and chloroplast envelope (GO: 
0009941) (Supplementary Table  8), which agrees with 
our previous results. A thorough characterization of 
Nitab4.5_0000305g0210.1 may help us discover new con-
nections between photosynthesis and N metabolism in 
plants.

We observed high expression for GERMIN3 gene 
(Nitab4.5_0007255g0060.1, NtGER3) under higher 
N dose and with 16 leaves retained (Fig.  7b), NtGER3 
is mainly enriched in response to cytokinin (CK) 
stimulus (GO: 0009735), peptidyl-cysteine modifica-
tion (GO: 0018198), peptidyl-cysteine S-nitrosylation 
(GO: 0018119) and protein amino acid nitrosylation 

(GO: 0017014) (Supplementary Table  8), suggesting 
that NtGER3 may play an important role in amino acid 
metabolism through CK pathway. In addition, the car-
bohydrate and fatty acid metabolism-related genes 
Nitab4.5_0000255g0150.1 (BETA GALACTOSIDASE1, 
NtBGAL1), Nitab4.5_0000348g0200.1 (3-KETOACYL-
ACYL CARRIER PROTEIN SYNTHASE1, NtKAS1), 
Nitab4.5_0000078g0290.1 (ESTERASE/LIPASE, NtG-
DSL) and Nitab4.5_0001881g0020.1 (FATTY ACID 
DESATURASE3, NtFAD3) are up-regulated in response 
to N dose and leaf number retained in green module, 
suggesting these genes might be key players in the plant 
energy regulation and development through carbon/
nitrogen (C/N) balance.

In the blue module network, we identified the N 
marker gene AMMONIUM TRANSPORTER2 (NtAMT2, 
Nitab4.5_0000444g0190.1) and two TFs (belonging to 
the RAP and NAC families) out of 30 nodes and 476 
edges (Fig.  7c). In contrast to the green module net-
work, a heatmap representation of gene expression from 
genes that belong to the blue module indicated that they 

Fig. 4  Relationship between 13 co-expression modules and different metabolic traits as determined by WGCNA
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were highly expressed in the bottom leaves, especially 
with the lower number of leaves retained (Fig.  7d). The 
gene Nitab4.5_0002716g0070.1 (RELATED TO AP2 12, 
NtRAP2.12) belongs to the ETHYLENE RESPONSE FAC-
TOR (ERF)/APETALA2 (AP2) TF family and NtRAP2.12 
is involved in ethylene-mediated signaling (GO: 0009873), 
regulation of nitrogen compound metabolic process 
(GO: 0051171) and regulation of primary metabolic 

process (GO: 0080090) (Supplementary Table  8), sug-
gesting NtRAP2.12 may control both phytohormone and 
N regulation. Genes within this module showed high 
expression levels at almost all leaf positions collected and 
both N doses, especially at high N application and fewer 
leaves retained (Fig.  7d). Aside from NtRAP2.12, we 
noticed three AUXIN-RESPONSE FACTOR (ARF) genes 
in the blue module network: Nitab4.5_0000441g0240.1 

Fig. 5  Analysis of the WGCNA green module. a. Scatterplot of gene significance for asparagine vs. module membership in the green module. b. 
Scatterplot of gene significance for putrescine vs. module membership in the green module. c. GO enrichment analysis results for genes belonging 
to the green module
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(NtARF-1), Nitab4.5_0011106g0010.1 (NtARF-2) and 
Nitab4.5_0000019g0400.1 (NtARF-3). This result suggests 
that phytohormones may play an important role in N reg-
ulation and that NtRAP2.12 may be a critical regulatory 
node. We also determined that Nitab4.5_0003289g0030.1 

(TETRASPANIN8, NtTET8) shared a highly similar 
expression pattern with NtRAP2.12 (Fig. 7d).

The other TF in the blue module network was 
Nitab4.5_0004654g0040.1 (NtNAC062) and was asso-
ciated with response to carbohydrate stimulus (GO: 

Fig. 6  Analysis of the WGCNA blue module. a. Scatterplot of gene significance for nitrogen level vs. module membership in the blue module. b. 
Scatterplot of gene significance for leaves retained vs. module membership in the blue module. c. GO enrichment analysis results for genes in the 
blue module
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0009743), regulation of biosynthetic process (GO: 
0009899) and regulation of N compound metabolic pro-
cess (GO: 0051171) (Supplementary Table 8). We specu-
late that NtNAC062 plays an important role in regulating 
the C/N balance in tobacco (Fig. 7d).

qRT‑PCR validation
qRT-PCR was used to detect and verify the rela-
tive expression levels of ten key DEGs identified by 

RNA-seq, these two results were calculated the Pear-
son correlation coefficients and used log2 fold changes 
at all sample stages (Supplementary Table  9). We 
obtained a correlation coefficient between RNA-seq 
and qRT-PCR of the ten genes were 0.86 (Supplemen-
tary Fig.  5), confirming the reliability and accuracy 
of the RNA-seq data. Although the results of the two 
analytical methods are different, it may be related to 
the detection range and sensitivity of the two methods.

Fig. 7  Construction of networks from the green and blue modules. a. Green module network. b. Heatmap representation of gene expression in 
the green module network. c. Blue module network. Pink circles represent TFs. d. Heatmap representation of gene expression in the blue module 
network. Gene expression values in the heatmaps were normalized to log2(FPKM+ 1)
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Discussion
In our study, we determined the contents of 32 metabo-
lites in tobacco leaves collected at four distinct positions, 
from plants exposed to two N fertilizer doses and two 
different leaf numbers remaining after topping. We also 
generated RNA-seq data for the same samples and iden-
tified 13,330 DEGs used as input for GO enrichment and 
WGCNA. We showed that N application and the number 
of leaves retained after topping affects the development 
and metabolism of tobacco plants at the molecular level, 
and identified several candidate genes that may partici-
pate in the regulation process.

Phytohormones play an important role in N regulation 
and leaf number retained. CK metabolism and signaling 
are closely related to N availability and regulates N uptake 
[14], the interaction between CKs and N have been stud-
ied widely [30–35]. Recently studies show that through 
shoot transcriptome analysis of the CK biosynthesis or 
translocation mutants defective under homogenous or 
heterogeneous nitrate supply, glutamate and glutamine 

related genes’ biosynthesis are identified as potential tar-
gets of tZ regulation [16], AtGER3 highly related to CK 
in Arabidopsis through proteomic and metabolomic [35]. 
Across to our WGCNA results, we identified NtGER3 as 
a hub gene in green module with high N dose (A2) and 
16 leaves retained (B2) is mainly enriched in response to 
CK stimulus, protein amino acid nitrosylation and pepti-
dyl-cysteine S-nitrosylation by GO analysis, we strongly 
speculate that NtGER3 may play an important role in N 
metabolism related to amino acid (cysteine) through CK 
pathway in tobacco leaves (Fig. 8).

Our RNA-seq results shows amino acid metabolism is 
more active in the top and upper part of the plant, dif-
ferent leaf number retained after topping had little effect 
on the middle and bottom leaf positions, but had strong 
effects in top and upper leaves. The blue module we 
identified in WGCNA was positive correlation with N 
dose and number of leaves retained but negative corre-
lation with metabolic substance. And we identified sev-
eral ARFs in blue module highly expression in bottom 

Fig. 8  Proposed a regulatory model in tobacco leaves
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leaves. Previous studies NRT1.1/CHL1 is a dual affinity 
nitrate transporter and nitrate sensor that links nitrate 
and auxin [11]. The auxin receptor gene AUXIN SIGN-
ALING F-BOX3 (AFB3) is induced by nitrate application, 
afb3 mutant shows no change in primary or lateral root 
growth in response to nitrate, demonstrating that nitrate 
regulates root architecture through AFB3 by modulating 
the auxin signal [36], Here we speculate ARFs may par-
ticipated in modulating the auxin signal and N in bottom 
leaves. Apart to ARFs, we also identified the ethylene-
related TF gene NtRAP2.12 in the blue module, which 
highly expression in low N dose (A1) and less leaf num-
ber retained (B1). AtRAP2.12 connects three gaseous sig-
nals (nitric oxide [NO], O2, and ethylene), is regulated by 
the N-degron pathway, and mediates adaptation to flood-
ing-induced hypoxia [37]. In addition, RAP2.12 stabiliza-
tion regulates respiration, the TCA cycle, and amino acid 
metabolism [38]. We speculated NtRAP2.12 may involve 
in N regulation through ethylene pathway. Ethylene plays 
an important regulatory roles in plant responses to min-
eral nutrients availability, especially N [39]. Plant leaves 
activate a N-recycling system in which N is recycled from 
phenylalanine by means of deamination to cinnamic acid 
under the conditions of N deficiency or starvation and 
this futile cycle is under the control of ethylene [40]. As 
stated in our results, genes related to cell wall biosynthe-
sis and photosynthesis were significantly down-regulated 
at lower N doses, conserving energy for new leaf forma-
tion and development.

To summarize our results above, leaves at the bottom 
and middle positions along the main stem competed for 
N resources: N preferentially supplied the bottom leaves 
closer to the root, while middle leaves received more N 
under lower N application for better photosynthesis. It’s 
also mentioned enhancing source-to-sink nitrate remo-
bilization represents a new strategy for enhancing NUE 
and crop production [41], researchers found under N 
starvation, the nrt1.7 mutant exhibits growth retarda-
tion and NRT1.7-mediated source-to-sink remobiliza-
tion of stored nitrate is important for sustaining growth 
in plants. We thought N application and leaf number 
retained may influence “source – flow – sink” redistribu-
tion and remobilization in tobacco plants, also involve 
some energy transformation. Much of the leaf N content 
is associated with photosynthetic proteins of the Calvin 
cycle and the structural components of thylakoids, hint-
ing at the influence of N supply on photosynthetic capac-
ity [42]. In the flag leaf of wheat, chlorophyll content and 
RuBisCO activity were approximately proportional to 
leaf N content [43]. Currently, substantial numbers of 
studies have explored the effects of N on plants and the 
importance of maintaining a C/N balance by combining 

photorespiration and photosynthesis, the TCA cycle 
being a critical central hub to their regulation [44–47]. 
Our results identified several carbohydrate and fatty acid 
metabolism-related genes are up-regulated in response 
to N dose and leaf number retained in green module, 
implied that the C/N transformation and balance affect 
the “source – flow – sink” redistribution and remobiliza-
tion in tobacco during growth and development process, 
which requires us to further investigate.

Conclusions
In summary, with the help of powerful multi-omics tech-
nology, and combined DEGs analysis, GO enrichment 
analysis and co-expression network constructed results, 
we identified 13,330 unique differentially expressed genes 
through RNA-seq and identified 32 metabolites metab-
olome analysis from four positions under two differ-
ent nitrogen doses and with different numbers of leaves 
retained after topping in tobacco. We identified two 
important regulatory networks involved in nitrogen com-
pounds and nitrogen metabolism, and combined with 
gene expression data, we predicted hub gene NtGER3 
may play an important role in N metabolism related to 
amino acid (cysteine) through CK pathway in tobacco 
leaves, NtARFs may participated in modulating the auxin 
signal and N in bottom leaves and NtRAP2.12 as key gene 
involved in N regulation by ethylene pathway. Our data 
also discussed C/N transformation and balance affect the 
“source – flow - sink” redistribution and remobilization 
in tobacco during growth and development process. The 
results provide a new insight into the complex molecu-
lar mechanism of the regulatory network controlling by 
different nitrogen application and different numbers of 
leaves retained after topping in tobacco plants.

Methods
Plant materials, rowing conditions and treatments
We used the tobacco (Nicotiana tabacum) cultivar K326 
in this study, which was kindly provided by the Guizhou 
Tobacco Research Institute, Guiyang, China. In order to 
analyze the effects of N applications and remaining leaves 
after topping on the dynamic development of tobacco 
plants, we applied exogenous N at two doses: A1 (pure 
N 3 kg/667 m2) and A2 (pure N 6 kg/667 m2), and it’s 
applied twice: the first was applied before transplanting 
and the second was applied 35 days after transplanting. 
We topped tobacco plants at 55 days after transplanting, 
sampled the bottom (Bo), middle (M), upper (U), and top 
(T) for each treated plant (Supplementary Fig.  1). The 
first sampling is 2 days after the topping, and the second 
sampling is 17 days after the topping, leaving two distinct 
numbers of remaining leaves per plant: B1 (12 leaves/
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plant) and B2 (16 leaves/plant). Plants were subjected to 
these four factors (A1, A2, B1, B2) in a split-plot experi-
ment design [48], each plot with 60 tobacco plants with 
a row spacing of 0.6 m and plant spacing of 1.1 m. All 
tobacco plants were grown in the field (106.42 °E, 26.35 
°N) and management measures were carried out accord-
ing to local tobacco cultivation techniques [49]. Three 
biological replicates for each of the samples were imme-
diately frozen in liquid nitrogen and stored at − 80 °C 
until further use.

Measurement of metabolic compounds
We measured 32 metabolites including total nitrogen, 
total protein, soluble protein, 21 amino acids, polyam-
ines (PAs), putrescine, spermidine, tyramine, agmatine, 
phenethylamine, isoamylamine, and ammonium ion, ϒ 
aminobutyric acid, at the Bo, M, U, and T positions along 
the main stem in two biological replicates in tobacco 
plants. We followed the tobacco industry standards of 
the People’s Republic of China for protein determina-
tion by the continuous-flow method (YC/T 249–2008) 
to extract protein for subsequent content determination 
and soluble protein content using a commercial assay 
kit (Coomassie Brilliant Blue G-250, Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China) according to 
the manufacturer’s instructions. The 21 free amino acid 
contents were measured by using on thin layer chro-
matography plates (TLC) as described previously [50]. 
We measured PAs content (isoamylamine, spermidine, 
phenethylamine, and putrescine) in tobacco leaves as 
described previously [51].

Total RNA extraction and RNA sequencing
Total RNA was extracted from the leaves using TRI-
zol reagent (Invitrogen, Carlsbad, CA, USA) and puri-
fied using RNeasy Plant Mini Kit (Qiagen, Valencia, CA, 
USA) according to the manufacturer’s instructions. Using 
a NanoDrop spectrophotometer (Thermo Fisher Scien-
tific, Inc.) quantified the RNA and the purity of the total 
RNA was detected by measuring both the A260/280 and 
A260/230 before use for deep sequencing of the tran-
scriptome (RNA-seq) and reverse transcription followed 
by quantitative real-time polymerase chain reaction 
(qRT-PCR) analysis.

Then cDNA libraries were constructed form tobacco 
leaves for sequencing. In brief, poly-A mRNA was puri-
fied from the total RNA using poly-T oligo-attached 
magnetic beads firstly, then the purified poly-A mRNA 
was fragmented into smaller fragments and were used 
as templates for the synthesis of first-strand cDNA with 
SuperScript II reverse transcriptase (Promega) and hex-
amer primers. Then DNA polymerase I, RNase H, DNA 
synthesis buffer and dNTPs with AMPure XP beads were 

used to synthesize the second-strand cDNA. The cDNA 
fragments were then purified, end-repaired, A-tailed with 
the MinElute PCR Purification Kit (Qiagen, Germany). 
The raw sequencing data are deposited in the BIG Data 
Center (https://​bigd.​big.​ac.​cn/) under BioProject acces-
sion number PRJCA003512.

Bioinformatic analysis
Quality-control analysis of each RNA-seq raw reads was 
performed using FastQC software (https://​www.​bioin​
forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/). The low-
quality reads and trimmed adaptors in the raw reads were 
removed with NGSQCTookit (v2.3.3) [52]. We mapped 
all cleaned reads to the Nicotiana tabacum reference 
genome (Nitab v4.5) (https://​solge​nomics.​net/​organ​ism/​
Nicot​iana_​tabac​um/​genome) by using Salmon (v0.8.2) 
with default parameters. We calculated gene expression 
estimates as fragments per kilobase of exon model per 
million mapped reads (FPKM) values with the Cufflink 
software package [52] and used the FeatureCounts [53] 
option to calculate non-normalized read counts per gene. 
Differentially expressed genes (DEGs) were identified 
using raw gene counts as input and calculated using the 
DESeq2 package [54] with the following requirements: 
false discovery rate (FDR) < 0.05 and absolute log2(fold 
change) ≥2 [55].

Knowledge about DEGs biological function is cru-
cial for our next step analysis, therefore, we annotated 
tobacco proteins by performing Basic Local Alignment 
Sequence Tool for Proteins (BLASTP) searches against 
Arabidopsis proteins from the Araport11 release with a 
minimum e-value cut-off of 10− 5 [56, 57], according to 
the blast results, the Arabidopsis protein with the highest 
homology was used as the tobacco corresponding protein 
for Gene Ontology (GO) pathway annotation. Significant 
enrichment analysis and statistical tests using the topGO 
package [58] in R; we visualized GO results using the R 
package ggplot2.

Weighted correlation network analysis (WGCNA)
We implemented the R package WGCNA [59, 60] to con-
struct co-expression networks and identify hub genes 
within important networks, and it’s an open source pack-
age at https://​horva​th.​genet​ics.​ucla.​edu/​html/​Coexp​ressi​
onNet​work/​Rpack​ages/​WGCNA/.

Briefly, we used genes expression data based on the 
log2(FPKM+ 1) from RNA-seq as “expression matrix”, 
and metabolomics data as “phenotypic traits”, the co-
expression network is constructed according to the 
correlation degree of these two sets of data. The soft 
threshold power was calculated by the pickSoftThreshold 
function, and our thresholding power is 18. Then, con-
nectivity, module eigengene, intramodular connectivity, 

https://bigd.big.ac.cn/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://solgenomics.net/organism/Nicotiana_tabacum/genome
https://solgenomics.net/organism/Nicotiana_tabacum/genome
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
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topological overlap matrix (TOM), module membership 
and hub gene were calculated and performed by estab-
lished code. The co-expression networks were presented 
using Cytoscape v3.5.1 [61].

Network analysis of transcription factors (TFs) and genes
To identify transcription regulatory networks in tar-
get co-expression modules, we selected the top 30 most 
significant genes in each module with a threshold value 
< 0.01. We identified TFs using PlantTFDB (http://​plant​
tfdb.​gao-​lab.​org). The resulting co-expression networks 
were generated and visualized using Cytoscape v3.5.1 
[61]. Heatmaps were created using modified expression 
values by the formula log2(FPKM + 1).

Validation of RNA‑seq by qRT‑PCR
In order to verify the reliability of RNA-seq results, 
qRT-PCR was used to detect 10 DEGs identified from 
our RNA-seq analysis as previously described [25], and 
NtEF-1α as an internal control for data normalization 
[62]. We designed all 11 gene-specific primers using the 
qPrimerDB Database (https://​biodb.​swu.​edu.​cn/​qprim​
erdb) [63]. Primer sequences are listed in Supplemen-
tary Table 1. Relative transcript levels were calculated as 
2−ΔΔCT [64]. Three independent biological replicates were 
analyzed per sample.

Statistical analysis
We performed all statistical analyses in SPSS V16.0 for 
Windows (SPSS, Chicago, Illinois, USA). We consid-
ered a difference to be statistically significant if P < 0.05. 
We performed one-way Analysis of variance (ANOVA) 
on data from experiment with three replicates [65]. We 
applied the Turkey test for multiple pairwise tests for 
significance.
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